Arduino programing of ML-style in ATS

Kiwamu Okabe

METASEPI DESIGN
kiwamu@debian.or.jp

Abstract

Functional programming languages often require a large run-time
environment supported by the underlying OS to ensure various
forms of safety during code execution. For instance, memory safety
is usually achieved through systematic garbage collection (GC),
which may not be available for embedded programming or should
even be avoided on purpose due its adverse effect on predictability.

In this talk, we demonstrate that programming in ATS, a lan-
guage with a functional core of ML-style, can be effectively em-
ployed to construct programs running on Arduino Uno (of 2KB
SRAM and 8-bit CPU).

1. Introduction

Functional programming (FP) is gain popularity steadily. In gen-
eral, FP is associated with the need for a big run-time environment
supported by the underlying OS. For instance, functional program-
ming languages (FPLs) like SML, OCaml, and Haskell fall into this
category. This need makes it difficult to directly employ these lan-
guages in embedded programming where resources are far more
limited and constraints (resource-wise and performance-wise) are
stricter. As an example, memory safety in FP is usually achieved
through systematic garbage collection (GC), which may not be
available for embedded programming or should even be avoided
on purpose due its adverse effect on predictability.

There have already been many attempts to address the issue of
applying FP to embedded programming.

One proposed approach is to have the run-time needed for FP
supported by a tiny OS (running on a VM) [1]. Of course, this
approach is not applicable if the underlying device is still too
limited for the tiny OS.

Another approach is to build a domain-specific language (DSL)
based on a host language of functional style (e.g., Haskell) [2] and
rely on the type system of the host language to ensure type-safety.
However, a DSL often lacks flexibility, and can incur a high cost in
terms of programming productivity.

Yet another approach is to directly employ a general purpose
FPL in the construction of programs running on bare metal hard-
ware [3], making trade-offs between safety with flexibility. This is
the approach we take here as well.

In this talk, we introduce ATS [4] as a FPL for constructing
programs running on Arduino Uno [5] (of 2 KB SRAM and 8-
bit CPU core). We give a concrete example showing that higher-
order functions (of ML-style) can be supported in this rather limited
environment. We also present some measurement to show that
binaries generated from ATS source are very close (in terms of size)
to those generated from the C counterpart.

2. ATS programming language

ATS is a programming language equipped with a highly expressive
type system rooted in the framework Applied Type System [4]. In

Hongwei Xi

Boston University
hwxi@cs.bu.edu

particular, dependent types (of DML-style) and linear types are
supported in ATS. For instance, we can use dependent types to
ensure statically (that is, at compile-time) the absence of out-of-
bounds array subscripting at run-time; we can use linear types to
prevent resources from being leaked; etc.

Binaries generated from ATS source tend to be very compact
and have minimal dependency on POSIX API. For programming
Arduino boards, we can use ATS to construct code that does not
rely on GC or any use of malloc/free. While this means that we have
to stay away features that do need GC or malloc/free, we can still
make use of higher-order functions (by stack-allocating closure-
functions) and many other programming features of ML-style (e.g.,
pattern matching, loops based on tail-recursion).

3. Arduino Uno board

Figure 1. Arduino Uno board

Figure 1 shows an Arduino Uno board that has following sum-
mary of specification:

e Architecture: AVR (8-bit Harvard architecture)
e Flash Memory: 32 KB
e SRAM: 2 KB

Also the board has many pins that can connect the other function
boards (that is, shields). Examples of shields include LCD screen,
Ethernet, WiFi, Motor control. Clearly, it is difficult for any appli-
cations running on the board to use GC due to its tiny memory (2
KB). Using (customized) malloc/free may be possible but certainly
requires great caution.

4. Compile flow for Arduino application

ATS can be readily used as a front-end to C. Figure 2 outlines a
cross-compilation environment for the AVR architecture. The ATS
compiler (patsopt) translates an ATS source file (e.g. main.dats)
into an C source file (e.g. main_dats.c). The C code is then
compiled by a C compiler (avr-gcc) into an object file (e.g.
main_dats.o). Finally a linker (avr-1d) combines several ob-
ject files (including those generated from ATS source) into a single
executable (e.g. main.elf).

O 00O W W —

O 00O\ W LN —

Clibrary
source code |

main.dats ATS library
source code

[patsopt] [patsopt]

SN =7 N Z
ATS library
code|
ATS library
object file
[avr-ar]

libatsduino.a

SgP=

main.elf

main_dats.c

avr-gee

Clibrary
object file |

avr-ar]

—

main_dats.o

Figure 2. Compile flow for Arduino application

5. Arduino programming in ATS

In this section, we translate a sample Arduino program (written in
C) into ATS. The following code is taken from Example 04 [6],
which gradually fade in an LED:

Listing 1. C code to fade an LED in

#define LED 9
#define DELAY_MS 10

int main() {
int i;

init();
pinMode (LED, OUTPUT);
while (1) {
for (i = 0; i < 255;
analogWrite (LED,
delay (DELAY_MS);

i++) {
i);

}

return O;

Listing 1 shows original code of C language. We can translate it
into ATS as is given in listing 2.

Listing 2. ATS code to fade an LED in

#define LED 9
#define DELAY_MS 10.0

typedef analog_w_t = natLt(256)

implement mainO () = {
fun fadein() = let
var fwork = lam@ (n: analog_w_t) =>

(analogWrite (LED, n); delay_ms(DELAY_MS))
in
// type-error if 256 changes to 255 or 257
int_foreach_clo(256, fwork) // higher-order
end // end of [fadein]

val () = init ()

15
16
17

val ()
val ()

pinMode (LED, OUTPUT)
(fix £(): void => (fadein();

£ O
}

The function analogWrite controls a given LED using pulse
width modulation (PWM)), taking as its second argument a natural
number less than 256 (that indicates brightness).

The function fadein gradually increases the brightness of
LED by calling analogWrite. It is implemented with a call to
a higher-order function int_foreach_clo; given 256 and fwork,
int_foreach_clo calls fwork on natural numbers from O until
255, inclusive. Note that fwork is a closure-function allocated in
the frame of fadein. In particular, there is no dynamic memory
allocation involved.

The fix-expression implements a non-terminating loop for call-
ing fadein (0) repeatedly.

6. Binary size efficiency of the ATS code

Example C ATS

01 1145 byte 1203 byte
02 1135 byte 1173 byte
03C 1203 byte 1231 byte
04 1447 byte 1493 byte
05 1635 byte 1571 byte
06A 1431 byte 1477 byte
06B 1421 byte 1467 byte

Table 1. Binary size efficiency on examples of the Arduino book

In Table 1, we give a comparison between the binary size of the
code generated from C programs and that of the code generated
from the ATS counterparts of these C programs. In each of the
presented case, the ATS version is only slightly larger (by fewer
than 50 bytes) than the C version. This should be reasonable for
practical use.

7. Conclusion

We have given a brief presentation in support of the claim that the
ATS programming language can be employed effectively for con-
structing programs running on bare metal hardware such as 8-bit
Arduino. It is shown that closure-functions can be stack-allocated
to support the use of higher-order functions in the absence of GC.
There are many other features in ATS for supporting safe and effi-
cient low-level programming that cannot be presented here due to
space limitation. For instance, safe manual memory management
can be based on linear types; template-based programming allows
for (extreme) late-binding of funtion calls; etc.

References

[1] Anil Madhavapeddy and David J. Scott. Unikernels: Rise of the virtual
library operating system. Queue.

[2] Patrick C. Hickey, Lee Pike, Trevor Elliott, James Bielman, and John
Launchbury. Building embedded systems with embedded dsls. In
Proceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming.

[3] Kiwamu Okabe and Takayuki Muranushi. Systems demonstration:
Writing netbsd sound drivers in haskell. In Proceedings of the 2014
ACM SIGPLAN Symposium on Haskell.

[4] Hongwei Xi. Applied Type System (extended abstract). In post-
workshop Proceedings of TYPES 2003. Springer-Verlag LNCS 3085.

[5] Arduino Uno. http://arduino.cc/en/Main/ArduinoBoardUno.

[6] Massimo Banzi. Getting Started with Arduino. O’Reilly, 2 edition,
2011.

