
Metasepi Report: Writing NetBSD Sound Drivers in Haskell
A Reentrant Haskell Compiler for Operating Systems Programming

Kiwamu Okabe
METASEPI DESIGN
kiwamu@debian.or.jp

Takayuki Muranushi
The Hakubi Center for Advanced Research

Kyoto University
muranushi.takayuki.3r@kyoto-u.ac.jp

Abstract
Most strongly typed, functional programming languages are not
equipped with a reentrant garbage collector. This is the reason why
such languages are not used for operating systems programming,
where the virtues of types are most desired. We propose use of
Context-Local Heaps (CLHs) to achieve reentrancy, also increasing
the speed of garbage collection. We have implemented CLHs in
Ajhc, a Haskell compiler derived from jhc, rewrote some NetBSD
sound drivers using Ajhc, and benchmarked them. The reentrant,
faster garbage collection that CLHs provide opens the path to type-
assisted operating systems programming.

Categories and Subject Descriptors D.4.0 [Operating Systems]:
Organization and Design; D.4.2 [Storage Management]: Garbage
collection

General Terms Languages, Design, Performance

Keywords Operating Systems, Haskell, Garbage collection, Reen-
trant code

1. Introduction
There are many established operating systems in use today, includ-
ing Linux, OS X, and Windows. With such competition, who seri-
ously cares about development of other operating systems? In ad-
dition to open-source operating system developers, embedded sys-
tems developers do.

Embedded systems developers program the electronic devices
that control everything from printers to cars. Life would not be
the same without their work. Inefficient development environments
make their job difficult, however.

Embedded systems developers modify and combine device
driver and operating system source code in order to create their
products. Most of the source code is only available in C, and it is
often outdated, unmaintained, undocumented, and unreadable to
an unimaginable degree. Use of such code often results in numer-
ous runtime errors. To make things worse, kernel and device driver
errors can be difficult to reproduce. They can also be difficult to de-
bug, as they cause the system to halt instead of raising a SEGV and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Haskell Symposium ’14, September 4–5, 2014, Göteborg, Sweden.
Copyright c⃝ 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

passing control to a debugger. In such an environment, how is the
quality of open-source operating systems maintained? The quality
is maintained by the Bazaar model: “given enough eyeballs, all
bugs are shallow.” [9]

Embedded systems developers face tough bugs in small teams,
so they are naturally attracted to the strengths of functional pro-
gramming and type systems. A strongly typed, open-source operat-
ing system would detect many errors, allowing embedded systems
developers to apply large changes more confidently and therefore
deliver more innovative features to the products that we use.

Typed operating systems have not been developed, however, for
a number of reasons. One issue is that functional programming
languages tend to be highly dependent on the operating system
and high-end hardware. Some software, such as microcontroller
firmware, must work without an operating system. Memory man-
agers and many drivers must run continuously in constant mem-
ory, without allocating new memory. Kernel software must handle
hardware interrupts, and be reenterable while doing so. In addition,
many components/systems must fit within megabytes or even kilo-
bytes of memory, which is too small to host the runtime of many
popular functional programming languages.

Reentrancy is necessary to achieve preemptive scheduling [11]
in a Unix-like kernel. The definition may seem trivial: a function is
reentrant if it can be hardware interrupted while running and safely
called again from the interruption. Reentrancy is different from
thread safety and referential transparency, however. For example, a
function that obtains a single resource at its beginning and releases
the resource at its end may be thread-safe but not reentrant. This
is because the execution of the first function call is suspended by
the interrupt and does not continue until the exit of the interruption
(and thus the second call). The second instance will wait forever
for the resource, which can only be released by the suspended first
instance. If the second instance were called from another thread
instead of an interruption, then it would be running in parallel and
could wait for the first instance to release the resource. The function
is therefore thread-safe but not reentrant.

Reentrancy may seem like an easy feature to achieve, but what
about garbage collection? A hardware interrupt may arrive while
the garbage collector is moving objects around and call arbitrary
functions that might access the objects and trigger another instance
of garbage collection! Most functional programming language run-
times would crash under such a mess.

The C programming language allows a high degree of con-
trol, but some things cannot be controlled with a functional pro-
gramming language. Garbage collection is one of them. Even the
most skillful programmers cannot write a reentrant function if the
garbage collector is not reentrant. Given that operating systems
must handle hardware interrupts, and we need reentrancy for in-

terrupt handlers, a reentrant garbage collector is required to imple-
ment a strongly typed operating system.

We have taken the following path to deliver a typed operating
system to embedded systems developers. Since we do not have the
manpower to write an entire operating system, we have adopted
a snatch design strategy (§2), where we gradually rewrite compo-
nents of an existing operating system in Haskell. In this paper, we
snatch the sound drivers, as hardware drivers are representative ex-
amples of interrupt handling applications. By successfully writing
these drivers, we demonstrate that our design can handle hardware
interrupts.

We decided to use jhc (§3) for multiple reasons, including the
fact that it produces binaries at least eight times smaller than other
candidates (§3.2). We invented and implemented Context-Local
Heaps (CLHs, §4) to make jhc reentrant, and we call the result
Ajhc. We snatched NetBSD’s AC’97 and HD audio sound drivers
into Haskell using Ajhc (§5). The snatched drivers play sound
seamlessly, while occupying a maximum of 0.6% of the CPU load
(§6.3) and performing garbage collection as frequent as 33.5 times
per second (§6.4). We conclude that we have opened a new path for
typed operating system development.

2. Snatch: A Design Strategy
Our strategy for creating a practical operating system that is written
in a strongly typed programming language is to gradually rewrite
components of an existing operating system, which we call the
snatch strategy. Using the snatch strategy, we do not have to design
an operating system from scratch. Instead, we start with the existing
C source code of a well-established operating system and gradually
rewrite components in our target language. With this strategy, we
are able to use the operating system while developing it [14] as well
as reuse existing device drivers.

There are a number of research projects aimed at designing an
operating system with a strongly typed programming language with
type inference, such as funk [1], snowflake-os [6], and house [2].
These projects have not been used as practical desktop or server
operating systems, in place of Linux or BSD, however. The reason
why is threefold.

All of these operating systems handle hardware interrupts by
polling. Since the languages in which they are developed in are not
reentrant, they must let the language runtime receive and store the
hardware interrupts, forcing the operating system to poll the stored
interrupts and raise events. On the contrary, practical operating sys-
tems receive hardware interrupts and call event handlers directly.
To implement a polling operating system, one must therefore de-
sign from scratch, ignoring decades of research.

Due to this design difference, polling operating systems are
incompatible with existing device drivers, which are written in C.
The fundamental goal of an operating system is to run applications.
To do so, it must detect the devices that are available and present
an abstract interface to the applications. There are myriad devices
in the world, and a polling operating system must reimplement the
device drivers for many of them in order to be practical.

Achieving practical use is unlikely when the developers are
busy reimplementing so many device drivers, but doing so is vital
to the success of an operating system. Operating systems such as
Linux are developed on systems that are running the operating
system being developed, and the developers use the system for
non-development purposes as well. This method of practical testing
results in a constant improvement in the quality of the operating
system.

For these reasons, we decided to implement a reentrant, strongly
typed programming language compiler instead of using a poll-
driven design.

Compiler Name Binary Size # Undef. Sym. # Dep. Lib.
GHC-7.4.1 797228 B 144 9
SML#-1.2.0 813460 B 134 7
OCaml-4.00.1 183348 B 84 5
MLton-20100608 170061 B 71 5
jhc-0.8.0 21248 B 20 3

Table 1. Compiler benchmarks on simple programs that print
“hoge” to standard output. We compare the size, number of unde-
fined symbols, and number of library dependencies of the generated
binaries.

3. Compiler Survey
We chose jhc [7] as the compiler for our research. We explain our
decision process in this section.

3.1 Compiler Requirements for Snatch Design
Our goal is to snatch NetBSD into a strongly typed language with
type inferencing. Many candidate languages exist, but the majority
of them are not suitable for snatch design. In order to snatch
a Unix-like kernel, the compiler must meet the following four
requirements.

First, the compiler must be able to generate binaries that have
few, if not zero, POSIX API calls. POSIX user-space applications
can make use of rich libraries such as libpthread and libc,
but such libraries are not accessible from kernel space. In order
to run binaries in kernel space, one must replace any POSIX API
calls with custom, error-prone C code. We minimize dependence on
the POSIX API in order to avoid such code. An optimal compiler
would generate binaries that require no libraries.

Second, the compiler must be able to generate executables that
are as space and time-efficient as those generated by C. Kernel
programs reside in memory and are executed frequently, so their
efficiency is important.

Third, the compiler must generate binaries that are thread-safe
and reentrant. The binaries must be thread-safe because kernels are
event-driven and may run on multiple cores, where many instances
of device driver calls are invoked in parallel. The reentrancy re-
quirement is more complicated. Reentrancy is required in event-
driven design, but it is also essential in implementing the interrupt
handler that receives hardware interrupts, particularly when using a
strongly typed language. Unix-like kernels have complicated inter-
rupt handlers with many built-in algorithms. Our goal is to prevent
errors in such interrupt handlers by using types. We need reentrancy
in order to implement this.

Fourth, we must avoid global locking during garbage collec-
tion. Unix-like kernels are event-driven and often run on multicore
CPUs, but global locking defeats the purpose of a multicore operat-
ing system. We also do not want global locking to impair interrupt
response performance. It is considered impossible to completely re-
move global locking, but short locks are acceptable. The NetBSD
kernel has interrupts every 10ms, so global locks should last under
1ms.

3.2 Compiler Benchmark
We considered five well-known, open-source compilers of typed
languages: GHC, SML#, OCaml, MLton, and jhc. To test the first
requirement, we implemented a simple program in all of the lan-
guages and compared the generated executables (c.f. Table 1).
Smaller counts indicate less dependence on POSIX libraries. Ac-
cording to Table 1, jhc has the best characteristics among the can-
didates.

Table 1 also shows that jhc is space-efficient. A comparison
between jhc and GHC [3] reports that jhc has many bugs, but

it is as time-efficient as GHC. Jhc therefore satisfies the second
requirement.

Jhc does not meet the third requirement, however. Binaries gen-
erated by jhc are not reentrant. They have only one execution con-
text and do not support threads at all. We have therefore developed
the Ajhc Haskell compiler,1 which adds reentrancy and thread sup-
port to jhc. This was achieved by the invention and implementation
of Context-Local Heaps (CLHs) in Ajhc (c.f. §4).

The fourth requirement is automatically satisfied as a result of
using CLHs. With CLHs, normal kernel functions and interrupt
handler functions run in separate contexts. Garbage collection in
one context does not block execution in other contexts. Global lock-
ing is still required when allocating the heap or context information
structures, but the lock intervals are short and have negligible effect
on system performance.

4. Context-Local Heaps
4.1 jgc: jhc’s Garbage Collector
A context is a set of information and resources required for a pro-
gram to execute. In jhc, context is implemented as global variables
and arguments passed through function calls. Jhc generates binaries
with only one context, so they are neither thread-safe nor reentrant.
This restriction is imposed by jgc, jhc’s garbage collector.

The garbage collection (GC) root pointer is an important part
of the jhc context. It points to a single garbage collector, and the
Haskell function mutators use the pointer to update the GC heap.
When the jhc mutator needs to construct a new instance in the
GC heap, it pushes a pointer to the instance onto the GC root. jgc
can determine which instances are alive by scanning the GC heap
from the GC root. The jhc runtime never switches contexts, neither
actively (as coroutines would) nor passively (as hardware interrupts
would).

Jhc functions can be separated into two groups based on garbage
collector accessibility: functions written in C that cannot access the
garbage collector, and functions written in Haskell that need to.
All Haskell functions must therefore receive the GC root pointer
as their first argument. All other parts of the context are accessible
from both C and Haskell functions.

Figure 1. jgc Haskell heap internals

jgc manages the GC heap using megablocks and blocks (Figure
1). A megablock is the largest unit. One is allocated when the
existing capacity of the GC heap is insufficient. Megablocks are
segmented into blocks, which are segmented into chunks. jgc stores

1 http://ajhc.metasepi.org/

Haskell thunks into these chunks. Megablocks and blocks have
a fixed size, which is set as a power of two during jhc runtime
compilation.2 The default sizes are 1MiB (= 220) and 4KiB (=
212) respectively.

Figure 2. Interfacing with C using jhc

Using jhc, C and Haskell functions can call each other (Figure
2). A problem arises when a Haskell function (functionA) calls a
C function (function c) that in turn calls another Haskell func-
tion (functionB). function c must pass the GC root pointer to
functionB but does not have access to it! This problem is solved
in jhc as follows.

All of the Haskell context except the GC root is accessed via
a global variable named arena, which is initialized during jhc’s
runtime initialization and persists throughout the execution of the
program. When a Haskell context calls a C function, the foreign
function interface (FFI) mechanism saves the GC root pointer to
a global variable named saved gc. If the C function calls another
Haskell function, the FFI retrieves the GC root pointer from that
variable and passes it as the first argument to the Haskell context.
In any further chains of Haskell function calls, the same GC root is
passed as the first argument.

Due to this, there can only be one GC heap and one arena per
program. In other words, there can be only one Haskell context, and
multi-threading is not possible.

4.2 Support Multiple Contexts in Ajhc
Many Haskell implementations, including GHC, utilize a global
heap (one GC heap per program). The global heap and purity of
Haskell allow sharing of data between multiple contexts without
having to copy it. It is difficult for one context to modify data inside
the GC heap while another context is accessing the heap, however,
making it difficult to implement a reentrant processing system.

In order to allow jgc to manage multiple Haskell contexts, Ajhc
assigns a separate arena and GC heap to each Haskell context. We
call these separate heaps Context-Local Heaps (CLHs).

Haskell contexts are not created during the initialization of the
runtime. A new Haskell context is created when a Haskell function
is called from C (Figure 3), and it is released when the function
returns.

Each Haskell context consists of pointers to an arena and GC
root. These pointers are passed as the first and second arguments
of C functions within a Haskell context. They are allocated by
NetBSD’s kernel memory allocator, kern malloc(). The Ajhc

2 http://ajhc.metasepi.org/manual.html#
special-defines-to-set-cflags

Figure 3. Interfacing with C using Ajhc

runtime caches the contexts internally instead of freeing them, in
order to increase the performance of subsequent context generation.

Haskell constructors are called within a Haskell context. The
Ajhc runtime attempts to ensure the memory of the instance by call-
ing the s alloc() function, finding and assigning free memory in
the GC heap. A GC heap is not assigned to a context when it is
created, and sometimes no memory in the GC heap is free. In such
cases, the runtime assigns a new GC heap to the context by call-
ing the kern malloc() function. When the context is no longer
needed, the GC heap is also cached internally for performance.

Figure 4. Life cycle of a CLH Haskell context

For the most part, a global lock is not required, but one is
required when ensuring the arena, the GC root, and the GC heap,
as well as returning them to the runtime. Since these structures
are stored in the runtime cache, there is no need to call a memory
allocation function, and the lock is generally completed in a short
period of time. The global lock is implemented by the NetBSD
mutex(9),3 which disables interrupts and spinlocks while holding
the lock.

4.3 Context-Local Heap Pros and Cons
Use of CLHs has benefits as well as drawbacks. One benefit, due
to reentrancy, is that it enables writing a hardware interrupt handler
in Haskell, because sections are accessed exclusively by disabling
interrupts using mutex(9).

Another benefit is that garbage collection is done in parallel. A
global lock is not held even while a context is performing garbage
collection, so other contexts can continue to mutate data. The main

3 http://netbsd.gw.com/cgi-bin/man-cgi?mutex_enter

context can receive hardware interrupts, and both the main context
and interrupt context can be written in Haskell.

A third benefit is that the frequency of garbage collection is
reduced in short-lived contexts. A clean GC heap is assigned at
the beginning of a context, and the dirty GC heap that is returned
to the runtime when the context is completed is reset to a clean
state. When the capacity of the GC heap is sufficient, garbage
collection is not performed at all. While garbage collection is of
course performed on long-lived contexts (such as the page daemon
of a virtual memory system4), event-driven programs, such as the
NetBSD kernel that we are focusing on, tend to have short-lived
contexts.

A drawback of using CLHs is that it becomes impossible to send
and receive messages between contexts (via MVar). This disadvan-
tage has not been significant in our rewriting of the NetBSD kernel,
as a built-in tree/queue is used for passing messages within the ker-
nel.

5. Snatching Drivers
We chose the AC’97 sound driver5 as our initial snatch target. We
reimplemented the member functions of struct audio hw if as
the main context and the auich intr() function as the interrupt
context, all in Haskell (Figure 5).

Figure 5. Partially snatched AC’97 sound driver

We initialize the Ajhc runtime during the NetBSD kernel ini-
tialization, just before autoconfiguration.6 While this is too late to
snatch NetBSD’s core framework such as the virtual memory sys-
tem, it is early enough to snatch normal device drivers.

Our modified kernel runs on QEMU and plays sound well. The
interrupt context cannot be tested on QEMU, however, because
QEMU does not strictly simulate AC’97 hardware interrupts. Un-
fortunately, we were unable to obtain AC’97 hardware.

We then snatched the HD Audio sound driver7 in order to test
the interrupt handler (Figure 6). Our modified kernel runs on real
HD Audio hardware and successfully plays sound.

At this stage, the C and Haskell representations are almost
identical, but we can refactor the Haskell code to use safer types
later.

4 http://netbsd.gw.com/cgi-bin/man-cgi?uvm
5 http://netbsd.gw.com/cgi-bin/man-cgi?auich
6 http://netbsd.gw.com/cgi-bin/man-cgi?config+9
7 http://netbsd.gw.com/cgi-bin/man-cgi?hdaudio

Figure 6. Partially snatched HD Audio sound driver

Kernel Version Drivers GC Option Block Size
(O) original
(S) snatched default 4096 B
(N) snatched naive 4096 B
(B4) snatched default 16 B
(B5) snatched default 32 B
(B6) snatched default 64 B

Table 2. NetBSD kernel versions prepared for benchmarking. All
kernel versions but (O) have AC’97 and HD Audio snatched via
Ajhc. The (N) kernel uses naive GC (c.f. §6.1). The (B4), (B5), and
(B6) kernels have particularly small GC blocks.

Kernel Version Text Data BSS
(O) 11257927 B 564060 B 464540 B
(S) 11319534 B 565084 B 464540 B

Table 3. ELF section sizes.

6. Sound Driver Benchmarks
6.1 Benchmark Environment
How does our modified NetBSD kernel compare with the original
kernel in terms of time and space efficiency? To benchmark the
kernels, we used an environment as follows:

• Machine: Netbook / Acer Aspire One D260
• CPU: Intel Atom N455 @ 1.66GHz / 2 Cores
• Memory: 1GB
• HD Audio Codec: Realtek ALC272
• OS: NetBSD 6.1.2

We compared the GC performance of various kernels with dif-
ferent GC parameters (Table 2). Note that naive GC (N) maximizes
GC frequency in order to maximize space efficiency.

6.2 Space Efficiency
We measured the space efficiency using both static and dynamic
methods. First, we statically evaluated space efficiency by compar-
ing the binary size of the kernel ELF (Table 3). The kernels with
snatched sound drivers increased by 60KiB in the text section and
1KiB in the data section. This increase includes both the AC’97 and
HD Audio drivers, and it is sufficiently small for practical use.

Kernel Version Occupied Memory Size CPU Load
(O) 46400 KiB 0.6%
(S) 48512 KiB 0.4%
(N) 48984 KiB 0.6%

Table 4. Occupied memory size and CPU load.

Kernel Version # GC Total Average Worst
(N) 7955 18.4 ms 0.0023 ms 0.0193 ms
(B4) — kernel panic —
(B5) 0 0 ms 0 ms 0 ms
(B6) 0 0 ms 0 ms 0 ms

Table 5. GC frequency and worst-case execution time.

Second, we dynamically evaluated space efficiency by read-
ing the amount of free memory immediately after loading the ker-
nel, using /proc/meminfo. The Haskell code is executed intermit-
tently even when no sound is played because an interrupt to the HD
Audio driver occurs at start-up. The kernels with snatched sound
drivers take over 2MiB of memory more than the original kernel
(Table 4), because some megablocks are held by jgc. Note that ad-
ditional CPU cores or contexts would result in megablocks taking
up more memory.

6.3 CPU Load
We measured time efficiency by getting the proportion of CPU
load using the top command while playing the sound source (237
seconds, 44.1 kHz stereo8) with the audioplay command. Haskell
code and garbage collection are not the dominant factor for CPU
load, as the results (Table 4) show comparable CPU load among
the various kernels.

6.4 GC Frequency and Worst-Case GC Time
We also measured worst-case execution time and frequency of
garbage collection because time efficiency is not only measured in
CPU load. For example, mutator throughput is decreased when GC
suspends the context of hardware interrupt handlers many times.
To measure these factors, we profiled Ajhc garbage collection in
various kernels while playing the same sound source (Table 5).

Using naive GC (N) resulted in a worst-case execution time
of 0.0193ms when under the 1ms lock limit discussed in §3.1.
The worst-case execution time may be more significant, however,
when snatching other parts of the NetBSD kernel that have more
long-lived contexts. GC frequency was 33.5 times per second (=
7995 times/237 seconds) when using naive GC (N), with sound
playing seamlessly.

With naive GC disabled, the GC block size is enough to run
the event-driven mutator. Garbage collection is first performed in a
context upon getting the 8th free block. 256 bytes (= 8×32 bytes)
is then enough to run the mutator in the (B5) case, which is quite
small. In addition, the megablock size can be made smaller for even
more space efficiency.

7. Related Works
The Rustic Operating System [5], written in the Rust programming
language [4], has event-driven design. Rust has linear types and
does not need garbage collection. Use of linear types is another
good method of designing an event-driven operating system. The
ATS language [13] also has linear types. In addition, both ATS

8 http://www.jamendo.com/en/track/771128/signal

and Rust have a mechanism for using pointers more safely than
in Haskell.

8. Conclusion and Discussion
We have developed Ajhc, a Haskell compiler that uses Context-
Local Heaps to generate reentrant executables. We reimplemented
some parts of the NetBSD kernel under the protection of the
Haskell type system, using Ajhc. We demonstrated that we can im-
plement hardware interrupt contexts as well as normal contexts in
Haskell. As a result, we demonstrated the snatch design strategy–to
gradually reimplement kernel source code in a language with type
inferencing and garbage collection.

We have overcome the three challenges of making a functional
operating system. The significant challenge of being able to use
the operating system as we develop it is solved by utilizing the
snatch design strategy. The hardware polling issue was avoided
by implementing interrupt contexts in Haskell. The challenge of
running alongside C device drivers was also eliminated by the
snatch design strategy, allowing Haskell and C kernel components
to work together without having to redesign the C components.

On the other hand, we have encountered some new problems.
We describe three of them here.

One problem is the difficulty of debugging Haskell components
of the kernel. Kernel programmers must deal with hardware issues
as well as ordinary software bugs. When debugging hardware, bi-
nary traceability of source code is essential. Ajhc translates Haskell
code into C code and then compiles the C code, however, and the
semantics of the intermediate C code is very different from that
of the source Haskell code. As a result, it can be difficult to trace
Haskell code in the resulting binary. Kernel debuggers may prefer
to use a functional language that is closer in representation to C
than Haskell.

Another problem is that Ajhc’s type system is not as powerful as
GHC’s. Ajhc does not support monad transformers,9 to say nothing
of various GHC extensions. We would like to call for readers who
are familiar with type theory to join us in the development of Ajhc
in order to solve this problem.

The third problem is that one cannot share values between dis-
tinct contexts in the current version of Ajhc. Deprived of the com-
mon Haskell heap, we are unable to implement MVars [10] or STM
[12]. We see distributed objects as a solution to this problem: con-
necting multiple contexts by network and implementing distributed
garbage collection [8].

Figure 7. A Haskell RSS reader, compiled with Ajhc, runs
using mbed-rtos on an ARM Cortex-M3 micro-controller with
512kB ROM and 32kB RAM. The left photo demonstrates
getting the IP address with DHCP. The right photo shows
a scrolling reddit.com news feed on the LCD panel. The
unsafeInterleaveIO API connects the Ethernet interface, RSS
parser, LEDs, and news text renderer on the LCD. See the demo
video at http://youtu.be/C9JsJXWyajQ.

Despite difficulties, an Ajhc application on a tiny microcon-
troller tirelessly keeps telling the good news that the age of type-
safe embedded systems development is coming soon (Figure 7).

9 https://github.com/ajhc/ajhc/issues/53

A promising future awaits the redesign of a Unix-like kernel
into Haskell. If we can assign types to the APIs of hardware, we
can impose software invariants during the design of peripherals.
Efficient filesystem designs will be enabled by the management
of complex algorithms. Typed system call APIs will soon follow,
allowing for safer and more productive applications programming.
For example, typed APIs can enforce system call requirements such
as memory alignments and buffer lengths. Moreover, type systems
will be able to assert such invariants from system calls all the way
to the hardware.

Such operating system design goals have been unattainably
ambitious with C, and currently established operating systems such
as Linux rely on human reviews for their safety. A strongly typed
operating system, on the other hand, will gain a significant amount
of safety from the type system. This will enable safe yet efficient
embedded systems development that is important in the Internet of
Things (IoT) where design of complex algorithms to run on cheap
hardware is required.

Acknowledgments
This research is part of the Metasepi Project,10 which aims to
deliver a Unix-like operating system designed with strong types.

We thank Hiroki MIZUNO and Hidekazu SEGAWA for their
assistance in the development of Ajhc. We thank Kazuhiro HAYAMA,
Hiroshige HAYASHIZAKI, Keigo IMAI, Travis Cardwell, and
Hongwei Xi for careful reading and commenting on the draft ver-
sion of this paper.

We would also like to thank John Meacham for his ingenious jhc
Haskell compiler. Finally, we would also like to thank the LPUX
team for the experience and inspiration that led us to pursue the
dream of a strongly typed operating system.

References
[1] T. funk team. Funk the functional kernel. URL http://home.gna.

org/funk/.
[2] T. Hallgren et al. A principled approach to operating system construc-

tion in haskell. In ICFP 2005, 2005.
[3] D. Himmelstrup. Notes on the lhc: The great haskell compiler

shootout. URL http://lhc-compiler.blogspot.jp/2010/07/
great-haskell-compiler-shootout.html.

[4] G. Hoare. The rust programming language. URL http://www.
rust-lang.org/.

[5] M. Iselin. Rustic operating system. URL https://github.com/
pcmattman/rustic.

[6] jessica.l.hamilton. snowflake-os an o’caml operating system. URL
https://code.google.com/p/snowflake-os/.

[7] J. Meacham. Jhc haskell compiler. URL http://repetae.net/
computer/jhc/.

[8] D. Plainfossé and M. Shapiro. A survey of distributed garbage collec-
tion techniques, 1995.

[9] E. S. Raymond. The cathedral and the bazaar. O’Reilly, 2001. ISBN
9780596001315.

[10] S. F. SL Peyton Jones, A Gordon. Concurrent haskell, 1996.
[11] A. S. Tanenbaum and A. S. Woodhull. Operating Systems Design and

Implementation. Pearson, 3 edition, 2008. ISBN 978-0-13-505376-8.
[12] S. P. J. Tim Harris, Simon Marlow and M. Herlihy. Composable

memory transactions, 2005.
[13] H. Xi. Applied Type System (extended abstract). In post-workshop

Proceedings of TYPES 2003, pages 394–408. Springer-Verlag LNCS
3085, 2004.

[14] G. P. Zachary. Showstopper! Free Press, 1994. ISBN 9780029356715.

10 http://metasepi.org/

