Systems Demonstration: Writing
NetBSD Sound Drivers in Haskell

Kiwamu Okabe

METASEPI DESIGN
kiwamu@debian.or.jp

Abstract

Most strongly typed, functional programming languages are not
equipped with a reentrant garbage collector. Therefore such lan-
guages are not used for operating systems programming, where the
virtues of types are most desired. We propose the use of Context-
Local Heaps (CLHs) to achieve reentrancy, which also increasing
the speed of garbage collection. We have implemented CLHs in
Ajhc, a Haskell compiler derived from jhc, rewritten some NetBSD
sound drivers using Ajhc, and benchmarked them. The reentrant,
faster garbage collection that CLHs provide opens the path to type-
assisted operating systems programming.

1. Introduction

Reentrancy is necessary to achieve preemptive scheduling [3] in
a Unix-like kernel. The definition may seem trivial: a function is
reentrant if it can be hardware interrupted while running and safely
called again from the interruption. Reentrancy may seem like an
easy feature to achieve, but what about garbage collection? A hard-
ware interrupt may arrive while the garbage collector is moving
objects around and call arbitrary functions that might access the ob-
jects and trigger another instance of garbage collection! Most func-
tional programming language runtimes would crash under these cir-
cumstances.

The C programming language allows a high degree of con-
trol, but some things cannot be controlled with a functional pro-
gramming language. Garbage collection is one of them. Even the
most skillful programmers cannot write a reentrant function if the
garbage collector is not reentrant. Given that operating systems
must handle hardware interrupts, and we need reentrancy for in-
terrupt handlers, a reentrant garbage collector is required to imple-
ment a strongly typed operating system.

We have taken the following path to deliver a typed operating
system. Since we do not have the manpower to write an entire
operating system, we have adopted a rewrite design strategy, where
we gradually rewrite components of an existing operating system in
Haskell. In this paper, we invented and implemented Context-Local
Heaps (CLHs, §2) to make jhc reentrant, and we call the result Ajhc
'. Then we have rewritten the sound drivers, as hardware drivers
are representative examples of interrupt handling applications. By
successfully writing these drivers, we demonstrate that our design
can handle hardware interrupts.

2. Context-Local Heaps

Many Haskell implementations utilize a global heap (one GC heap
per program). The global heap and purity of Haskell allow sharing
of data between multiple contexts without having to copy it. It is

'http://ajhc.metasepi.org/

Takayuki Muranushi

RIKEN Advanced Institute for Computational Science
takayuki.muranushi@riken.jp

difficult for one context to modify data inside the GC heap while
another context is accessing the heap, however, making it difficult
to implement a reentrant processing system. In order to manage
multiple Haskell contexts, Ajhc assigns a separate arena and GC
heap to each Haskell context. We call these separate heaps Context-
Local Heaps (CLHs).

Haskell contexts are not created during the initialization of the
runtime. A new Haskell context is created when a Haskell function
is called from C, and it is released when the function returns.
Each Haskell context consists of pointers to an arena and GC
root. These pointers are passed as the first and second arguments
of C functions within a Haskell context. They are allocated by
NetBSD’s kernel memory allocator, kern malloc(). The Ajhc
runtime caches the contexts internally instead of freeing them, in
order to increase the performance of subsequent context generation.
Haskell constructors are called within a Haskell context. The Ajhc
runtime attempts to ensure the memory of the instance by calling
the s_alloc () function, finding and assigning free memory in the
GC heap. A GC heap is not assigned to a context when it is created,
and sometimes no memory in the GC heap is free. In such cases,
the runtime assigns a new GC heap to the context by calling the
kernmalloc() function. When the context is no longer needed,
the GC heap is also cached internally for performance.

Context || Context [| Context [| Context >

(1. ereate) (2. initialize) | | (3. running) (4. exit)
(o stack }\ (e stack) || ([g0 stack) || [c stack H

inilialize
-
. Jjgc_hs_init p heap
Mutator assign Use lock &

G
heay
‘|‘ construct Qx‘sable intr,

s _alioc()) (" Jse_atioc_sini()

¥ ¥ ¥
()=

Runtime \

Use lock & {\—T——
Disable intr, m

Pool in Ajhc runtime

Figure 1. Life cycle of a CLH Haskell context

The mutator can run without any global locks. However the
runtime requires a global lock at following cases: creating Haskell
context, initializing context, allocating memory on GC heap and
returning context to the runtime. Since these structures are stored
in the runtime cache, there is no need to call a memory allocation
function, and the lock is generally completed in a short period of
time. The global lock is implemented by the NetBSD mutex (9),2
which disables interrupts and spinlocks while holding the lock.

2http://netbsd.gw.com/cgi-bin/man-cgi?mutex_enter

Use of CLHs has benefits as well as drawbacks. One benefit, due
to reentrancy, is that it enables writing a hardware interrupt han-
dler in Haskell, because sections are accessed exclusively by dis-
abling interrupts using mutex (9). Another benefit is that garbage
collection is done in parallel. A global lock is not held even while
a context is performing garbage collection, so other contexts can
continue to mutate data. The main context can receive hardware
interrupts, and both the main context and interrupt context can be
written in Haskell. A third benefit is that the frequency of garbage
collection is reduced in short-lived contexts. A clean GC heap is as-
signed at the beginning of a context, and the dirty GC heap that is
returned to the runtime when the context is completed is reset to a
clean state. When the capacity of the GC heap is sufficient, garbage
collection is not performed at all. While garbage collection is of
course performed on long-lived contexts (such as the page daemon
of a virtual memory), event-driven programs, such as the NetBSD
kernel that we are focusing on, tend to have short-lived contexts.

A drawback of using CLHs is that it becomes impossible to send
and receive messages between contexts (via an MVar). This disad-
vantage has not been significant in our rewriting of the NetBSD
kernel, as a built-in tree/queue is used for passing messages within
the kernel.

3. Rewriting Drivers

We rewrite the HD Audio sound driver® in order to test the interrupt
handler (Figure 2). Our modified kernel runs on real HD Audio
hardware and successfully plays sound. At this stage, the C and
Haskell representations are almost identical, but we can refactor
the Haskell code to use safer types later.

Haskell heap [}
|
Haskell
/ Allocate C language
Y lEntryJ l Exit J Ajhe
s_alloc() Ak /' runtime
'
- -
~ Return

Netbook Intel chipset |Interrupt | iret
hardware v

HD Audio i Speaker

Figure 2. Partially rewrited HD Audio sound driver

4. Sound Driver Benchmarks

How does our modified NetBSD kernel compare with the original
kernel in terms of time efficiency? To benchmark the kernels, we
used an environment as follows:

e Intel Atom N455 @ 1.66GHz /2 Cores / 1GB Memory
e NetBSD 6.1.2

We compared the GC performance of various kernels with dif-
ferent GC parameters. Note that naive GC maximizes GC fre-
quency in order to maximize space efficiency.

We measured time efficiency by getting the proportion of CPU
load using the top command while playing the sound source (237

3http://netbsd.gw.com/cgi-bin/man-cgi?hdaudio

GC Total
7955 18.4ms

Average Worst
0.0023 ms 0.0193 ms

Table 1. GC frequency and worst-case execution time, with naive
GC.

seconds, 44.1 kHz stereo*) with the audioplay command. Haskell
code and garbage collection are not the dominant factor for CPU
load, as 0.5% among the various kernels.

We also measured worst-case execution time and frequency of
garbage collection because time efficiency is not only measured in
CPU load. For example, mutator throughput is decreased when GC
suspends the context of hardware interrupt handlers many times.
To measure these factors, we profiled Ajhc garbage collection in
various kernels while playing the same sound source (Table 1).

Using naive GC resulted in a worst-case execution time of
0.0193ms that is acceptable for Unix-like system. The worst-
case execution time may be more significant, however, when
rewriting other parts of the NetBSD kernel that have more long-
lived contexts. GC frequency was 33.5 times per second (=
7995 times/237 seconds) when using naive GC, with sound play-
ing seamlessly.

5. Related Works

The Rustic Operating System [2], written in the Rust programming
language [1], has event-driven design. Rust has linear types and
does not need garbage collection. Use of linear types is another
good method of designing an event-driven operating system. The
ATS language [4] also has linear types. In addition, both ATS and
Rust have a mechanism for using pointers more safely than in
Haskell.

6. Conclusion

We have developed Ajhc, a Haskell compiler that uses Context-
Local Heaps to generate reentrant executables. We reimplemented
some parts of the NetBSD kernel under the protection of the
Haskell type system, using Ajhc. We demonstrated that we can im-
plement hardware interrupt contexts as well as normal contexts in
Haskell. As a result, we demonstrated the rewrite design strategy—
to gradually reimplement kernel source code in a language with
type inferencing and garbage collection.

Acknowledgments

This research is part of the Metasepi Project,” which aims to deliver
a Unix-like operating system designed with strong types. We thank
Hiroki MIZUNO and Hidekazu SEGAWA for their assistance in
the development of Ajhc.

References

[1] G. Hoare. The rust programming language. URL http://www.
rust-lang.org/.

[2] M. Iselin. Rustic operating system. URL https://github.com/
pcmattman/rustic.

[3] A. S. Tanenbaum and A. S. Woodhull. Operating Systems Design and
Implementation. Pearson, 3 edition, 2008. ISBN 978-0-13-505376-8.

[4] H. Xi. Applied Type System (extended abstract). In post-workshop
Proceedings of TYPES 2003, pages 394—408. Springer-Verlag LNCS
3085, 2004.

“http://www.jamendo.com/en/track/771128/signal
Shttp://metasepi.org/

